2298 independent reflections

1946 reflections with $I > 2\sigma(I)$

 $V = 1738.8 (10) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K $0.41 \times 0.20 \times 0.18 \text{ mm}$

 $R_{\rm int} = 0.056$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A diterpenoid from Isodon japonica var. glaucocalyx

Xing-Ke Ma,^a Zhi-An He^b and Su-Ping Bai^c*

^aDepartment of Chemistry, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China, ^bDepartment of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China, and ^cPharmacy College, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China

Correspondence e-mail: baisuping@xxmu.edu.cn

Received 26 August 2007; accepted 3 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.127; data-to-parameter ratio = 10.1.

The title compound, 7α , 14β -dihydroxy-*ent*-kaur-16-ene-3, 5dione or glaucocalyxin A, C₂₀H₂₈O₄, a natural ent-kaurane diterpenoid, is composed of four rings with the expected cis and *trans* junctions. In the crystal structure, the molecules are linked together by $O-H \cdots O$ hydrogen bonds to form double chains running along the shortest cell axis.

Related literature

For related literature, see: Allen et al. (1987); Kim et al. (1992); Sun et al. (2001).

Experimental

Crystal data

$C_{20}H_{28}O_4$
$M_r = 332.42$
Orthorhombic, $P2_12_12_1$
a = 6.6349 (19) Å
b = 10.659 (4) Å
c = 24.586 (7) Å

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: none 17081 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.127$	independent and constrained
S = 1.00	refinement
2298 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
228 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$O2-H2O\cdots O4^{i}$	0.94 (3)	1.83 (3)	2.765 (3)	171 (3)
	$O4-H4O\cdots O2$	0.84 (4)	1.85 (4)	2.641 (3)	156 (4)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL.

This work was supported by Henan Province Science and Technology Foundation of China (No. 001170724)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2095).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Kim, D. S., Chang, R. G., Shen, X. Y., Chen, Y. P. & Sun, H. D. (1992). Phytochemistry, 31, 667-668.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SHELXTL. Version 5.0. Siemens Industrial Automation Inc. Analytical Instrumentation, Madison, Wisconsin, USA.

Sun, H. D., Xu, Y. L. & Jing, B. (2001). Diterpenoids from Isodon Species, pp. 4-17. Beijing: Science Press.

Acta Cryst. (2007). E63, o4203 [doi:10.1107/S1600536807043048]

A diterpenoid from Isodon japonica var. glaucocalyx

X.-K. Ma, Z.-A. He and S.-P. Bai

Comment

The title compound(I), is a natural *ent*-kaurane diterpenoid isolated from the medicinal plant Isodon japonica var. glaucocalyx. This plant has been used as antibacterial, inflammation-diminishing and stomachic agents. The compound (I) has been isolated previously from the same source and its structure was postulated from spectroscopic methods (Kim *et al.*,1992). In order to further confirm the structure and conformation of (I), a crystal structure analysis has been undertaken.

The X-ray crystallographic analysis confirms the previously proposed molecular structure of (I). Fig.1 shows its conformation: two carbonyl groups locate at C3 and C15, while two hydrogen groups adopt α , β -orientations at C7 and C14 respectively. There is a *trans* junction between ring A (C1—C5/C10) and ring B (C5—C10); *cis* junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16).

Bond lengths and angles are within expected ranges (Allen *et al.*, 1987), with average values (Å): Csp^3 — Csp^3 = 1.541 (3), Csp^3 — Csp^2 = 1.517 (4), Csp^2 — Csp^2 (in C=C—C=O) = 1.500 (4), C=C = 1.326 (4), C=O = 1.209 (3), Csp^3 —O = 1.432 (3). Rings B and C have chair conformations, with average torsion angles of 54.6 (2) ° and 55.8 °, respectively. Ring A adopts a twist-boat conformation and ring D shows an evenlope conformation; the flap atom, C14, lies 0.69 (1) Å from the plane defined by atoms C8, C15, C16 and C13.

The molecule contains seven chiral centers at C5(R), C7(R), C8(R), C9(S), C10(R), C13(R) and C14(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the *ent*- kaurane series as reported in genus Isodon (Sun *et al.*,2001), rather than in the kaurane series, and so allowed us to assign the correct configuration. In the crystal structure the molecules are linked by O—H…O hydrogen bonds, to form double chains running along the shortest cell axis, a. (Table 1 and Fig. 2).

Experimental

The dried and crushed leaves of Isodon japonica var. glaucocalyx (10 kg, collected from Hui Prefecture, Henan Province, China) were extracted four times with Me₂CO/H₂O (7:3, v/v) at room temperature over a period of seven days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl₃/Me₂CO(10:1), giving 900 mg of compound (I) (m.p. 493–495 K. Optical rotation: $[\alpha]_D^{20}$ –183 ° (c 1/2, CHCl₃). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the compound (I) in Me₂CO at room temperature.

Refinement

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.96 Å (CH₃), 0.93 and 0.97 Å (CH₂), and 0.98 Å (CH), and with U_{iso} (H) = 1.2 U_{eq} (C). In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds with known stereochemistry.

 $D_x = 1.270 \text{ Mg m}^{-3}$ Melting point: 493 K Mo K α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.1-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.41 \times 0.20 \times 0.18 \text{ mm}$

Cell parameters from 13908 reflections

Figures

Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of (I), viewed along the b axis. O—H…O hydrogen bonds are shown as dashed lines.

7α,14β-dihydroxy-ent-kaur-16-ene-3,5-dione

$C_{20}H_{28}O_4$
$M_r = 332.42$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 6.6349 (19) Å
<i>b</i> = 10.659 (4) Å
c = 24.586 (7) Å
$V = 1738.8 (10) \text{ Å}^3$
Z = 4
$F_{000} = 720$

Data collection

Rigaku R-AXIS RAPID diffractometer	1946 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.056$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -8 \rightarrow 8$

Absorption correction: none	$k = -13 \rightarrow 13$
17081 measured reflections	$l = -31 \rightarrow 31$
2298 independent reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.127$

S = 1.00

2298 reflections

228 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

H atoms treated by a mixture of

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: none

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$

independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0826P)^2 + 0.1982P]$

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional *R*-factors *R* are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

|--|

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6082 (4)	0.8582 (2)	0.68057 (9)	0.0771 (8)
O2	0.1990 (3)	0.39429 (17)	0.49532 (6)	0.0379 (4)
O3	-0.1915 (3)	0.32770 (18)	0.57763 (8)	0.0441 (5)
O4	0.3435 (3)	0.19761 (17)	0.54776 (8)	0.0439 (5)
C1	0.2273 (5)	0.6432 (3)	0.70138 (10)	0.0479 (7)
H1A	0.0821	0.6336	0.7034	0.057*
H1B	0.2830	0.6163	0.7359	0.057*
C2	0.2764 (5)	0.7819 (3)	0.69317 (12)	0.0563 (8)
H2A	0.1662	0.8217	0.6738	0.068*
H2B	0.2884	0.8221	0.7284	0.068*
C3	0.4674 (5)	0.8012 (2)	0.66199 (10)	0.0477 (7)
C4	0.4690 (5)	0.7467 (2)	0.60447 (9)	0.0406 (6)
C5	0.3202 (4)	0.6329 (2)	0.60206 (8)	0.0309 (5)
Н5	0.1860	0.6700	0.5977	0.037*
C6	0.3501 (4)	0.5498 (2)	0.55213 (8)	0.0311 (5)
H6A	0.3604	0.6019	0.5199	0.037*
H6B	0.4748	0.5030	0.5558	0.037*
C7	0.1754 (3)	0.4593 (2)	0.54579 (8)	0.0295 (5)
H7	0.0501	0.5078	0.5443	0.035*
C8	0.1644 (3)	0.3699 (2)	0.59436 (8)	0.0257 (4)
С9	0.1505 (3)	0.4486 (2)	0.64833 (8)	0.0302 (5)
Н9	0.0210	0.4924	0.6457	0.036*
C10	0.3093 (3)	0.5555 (2)	0.65574 (8)	0.0300 (5)
C11	0.1273 (4)	0.3612 (3)	0.69854 (10)	0.0429 (6)
H11A	0.1696	0.4070	0.7307	0.052*
H11B	-0.0144	0.3412	0.7029	0.052*
C12	0.2459 (5)	0.2384 (3)	0.69599 (10)	0.0477 (7)
H12A	0.1948	0.1812	0.7234	0.057*
H12B	0.3865	0.2551	0.7041	0.057*
C13	0.2304 (4)	0.1762 (2)	0.63987 (11)	0.0407 (6)
H13	0.2960	0.0938	0.6395	0.049*
C14	0.3249 (3)	0.2652 (2)	0.59796 (9)	0.0322 (5)
H14	0.4551	0.2977	0.6104	0.039*
C15	-0.0298 (3)	0.2914 (2)	0.59443 (9)	0.0316 (5)
C16	0.0144 (4)	0.1678 (3)	0.62099 (13)	0.0478 (7)
C17	-0.1289 (6)	0.0875 (3)	0.63508 (14)	0.0688 (10)
H17A	-0.2634	0.1069	0.6286	0.083*
H17B	-0.0949	0.0117	0.6515	0.083*
C18	0.3899 (7)	0.8516 (3)	0.56763 (12)	0.0642 (10)
H18A	0.2557	0.8739	0.5785	0.077*
H18B	0.3883	0.8230	0.5306	0.077*
H18C	0.4761	0.9235	0.5706	0.077*
C19	0.6851 (5)	0.7164 (3)	0.58732 (14)	0.0623 (9)
H19A	0.6878	0.6962	0.5493	0.075*
H19B	0.7335	0.6461	0.6079	0.075*
-				

H19C	0.7697	0.7879	0.5940	0.075*
C20	0.5169 (4)	0.5082 (2)	0.67412 (11)	0.0414 (6)
H20A	0.6002	0.5784	0.6837	0.050*
H20B	0.5791	0.4624	0.6450	0.050*
H20C	0.5012	0.4543	0.7051	0.050*
H2O	0.071 (5)	0.370 (3)	0.4827 (12)	0.049 (8)*
H4O	0.291 (6)	0.244 (4)	0.5241 (14)	0.076 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.104 (2)	0.0781 (16)	0.0495 (11)	-0.0581 (16)	-0.0082 (12)	-0.0065 (11)
O2	0.0415 (10)	0.0446 (9)	0.0275 (7)	-0.0064 (8)	0.0001 (7)	-0.0110 (7)
O3	0.0261 (8)	0.0535 (11)	0.0527 (10)	-0.0042 (9)	-0.0007 (8)	-0.0091 (9)
O4	0.0473 (11)	0.0401 (10)	0.0443 (10)	0.0112 (9)	0.0062 (9)	-0.0119 (8)
C1	0.0565 (17)	0.0494 (15)	0.0376 (12)	-0.0154 (13)	0.0139 (13)	-0.0167 (12)
C2	0.076 (2)	0.0440 (15)	0.0485 (15)	-0.0072 (15)	0.0103 (15)	-0.0207 (13)
C3	0.0726 (19)	0.0325 (13)	0.0379 (13)	-0.0175 (14)	-0.0048 (13)	-0.0050 (10)
C4	0.0582 (16)	0.0316 (12)	0.0321 (11)	-0.0162 (13)	-0.0016 (11)	-0.0012 (9)
C5	0.0351 (12)	0.0291 (10)	0.0284 (10)	-0.0040 (10)	-0.0003 (9)	-0.0034 (9)
C6	0.0387 (12)	0.0303 (10)	0.0243 (9)	-0.0089 (10)	0.0034 (9)	0.0009 (9)
C7	0.0296 (10)	0.0325 (11)	0.0265 (9)	-0.0017 (10)	-0.0005 (9)	-0.0047 (9)
C8	0.0229 (10)	0.0284 (10)	0.0260 (9)	-0.0021 (9)	0.0017 (8)	-0.0043 (8)
C9	0.0289 (11)	0.0328 (11)	0.0289 (10)	-0.0029 (10)	0.0065 (9)	-0.0049 (9)
C10	0.0329 (11)	0.0321 (11)	0.0250 (9)	-0.0067 (10)	0.0023 (9)	-0.0051 (9)
C11	0.0488 (14)	0.0479 (14)	0.0321 (11)	-0.0142 (13)	0.0120 (11)	0.0004 (11)
C12	0.0571 (17)	0.0456 (14)	0.0406 (13)	-0.0095 (13)	0.0029 (13)	0.0152 (12)
C13	0.0417 (13)	0.0283 (11)	0.0520 (14)	-0.0016 (11)	0.0021 (12)	0.0049 (10)
C14	0.0269 (11)	0.0339 (12)	0.0357 (11)	0.0007 (10)	0.0021 (9)	-0.0062 (9)
C15	0.0251 (11)	0.0360 (12)	0.0337 (10)	-0.0052 (10)	0.0041 (9)	-0.0094 (10)
C16	0.0392 (14)	0.0375 (13)	0.0669 (17)	-0.0096 (12)	0.0030 (13)	0.0031 (13)
C17	0.065 (2)	0.0606 (19)	0.081 (2)	-0.0317 (18)	-0.0093 (18)	0.0210 (18)
C18	0.107 (3)	0.0366 (14)	0.0493 (16)	-0.0186 (18)	-0.0143 (18)	0.0071 (13)
C19	0.0580 (18)	0.068 (2)	0.0604 (17)	-0.0345 (17)	0.0166 (15)	-0.0077 (16)
C20	0.0380 (13)	0.0431 (14)	0.0432 (13)	-0.0094 (12)	-0.0094 (11)	0.0064 (11)

Geometric parameters (Å, °)

O1—C3	1.205 (3)	C9—C11	1.554 (3)
O2—C7	1.430 (2)	C9—C10	1.562 (3)
O2—H2O	0.94 (3)	С9—Н9	0.9800
O3—C15	1.213 (3)	C10—C20	1.535 (3)
O4—C14	1.434 (3)	C11—C12	1.529 (4)
O4—H4O	0.84 (4)	C11—H11A	0.9700
C1—C2	1.527 (4)	C11—H11B	0.9700
C1—C10	1.558 (3)	C12—C13	1.534 (4)
C1—H1A	0.9700	C12—H12A	0.9700
C1—H1B	0.9700	C12—H12B	0.9700
C2—C3	1.495 (4)	C13—C16	1.509 (4)

C2—H2A	0.9700	C13—C14	1.534 (3)
C2—H2B	0.9700	C13—H13	0.9800
C3—C4	1.529 (3)	C14—H14	0.9800
C4—C19	1.529 (4)	C15—C16	1.500 (4)
C4—C18	1.531 (4)	C16—C17	1.325 (4)
C4—C5	1.566 (3)	C17—H17A	0.9300
C5—C6	1.527 (3)	C17—H17B	0.9300
C5—C10	1.558 (3)	C18—H18A	0.9600
С5—Н5	0.9800	C18—H18B	0.9600
C6—C7	1.516 (3)	C18—H18C	0.9600
С6—Н6А	0.9700	C19—H19A	0.9600
С6—Н6В	0.9700	C19—H19B	0.9600
С7—С8	1.529 (3)	С19—Н19С	0.9600
С7—Н7	0.9800	C20—H20A	0.9600
C8—C15	1.537 (3)	C20—H20B	0.9600
C8—C14	1.545 (3)	С20—Н20С	0.9600
C8—C9	1.572 (3)		
С7—О2—Н2О	108.7 (17)	C5-C10-C1	107.96 (19)
C14—O4—H4O	105 (3)	C20—C10—C9	113.58 (19)
C2-C1-C10	114.3 (2)	C5—C10—C9	108.58 (17)
C2—C1—H1A	108.7	C1—C10—C9	106.63 (18)
C10-C1-H1A	108.7	C12—C11—C9	115.4 (2)
C2—C1—H1B	108.7	C12—C11—H11A	108.4
C10-C1-H1B	108.7	C9—C11—H11A	108.4
H1A—C1—H1B	107.6	C12—C11—H11B	108.4
C3—C2—C1	112.5 (2)	C9—C11—H11B	108.4
С3—С2—Н2А	109.1	H11A—C11—H11B	107.5
C1—C2—H2A	109.1	C11—C12—C13	111.9 (2)
С3—С2—Н2В	109.1	C11—C12—H12A	109.2
C1—C2—H2B	109.1	C13—C12—H12A	109.2
H2A—C2—H2B	107.8	C11—C12—H12B	109.2
O1—C3—C2	122.2 (2)	C13—C12—H12B	109.2
O1—C3—C4	122.5 (3)	H12A—C12—H12B	107.9
C2—C3—C4	115.3 (2)	C16-C13-C12	111.5 (2)
C3—C4—C19	110.0 (2)	C16—C13—C14	102.6 (2)
C3—C4—C18	105.5 (2)	C12-C13-C14	108.0 (2)
C19—C4—C18	108.2 (3)	C16—C13—H13	111.5
C3—C4—C5	108.96 (19)	C12—C13—H13	111.5
C19—C4—C5	114.7 (2)	C14—C13—H13	111.5
C18—C4—C5	109.1 (2)	O4—C14—C13	107.62 (19)
C6—C5—C10	112.34 (18)	O4—C14—C8	111.89 (18)
C6—C5—C4	113.44 (19)	C13—C14—C8	101.75 (18)
C10—C5—C4	114.07 (17)	O4—C14—H14	111.7
C6—C5—H5	105.3	C13—C14—H14	111.7
С10—С5—Н5	105.3	C8—C14—H14	111.7
C4—C5—H5	105.3	O3—C15—C16	127.0 (2)
C7—C6—C5	110.63 (18)	O3—C15—C8	124.6 (2)
С7—С6—Н6А	109.5	C16—C15—C8	108.4 (2)
С5—С6—Н6А	109.5	C17—C16—C15	122.8 (3)

С7—С6—Н6В	109.5	C17—C16—C13	129.7 (3)
С5—С6—Н6В	109.5	C15—C16—C13	105.5 (2)
H6A—C6—H6B	108.1	С16—С17—Н17А	120.0
O2—C7—C6	108.30 (18)	С16—С17—Н17В	120.0
O2—C7—C8	112.40 (18)	H17A—C17—H17B	120.0
C6—C7—C8	110.64 (17)	C4C18H18A	109.5
O2—C7—H7	108.5	C4C18H18B	109.5
С6—С7—Н7	108.5	H18A—C18—H18B	109.5
С8—С7—Н7	108.5	C4—C18—H18C	109.5
C7—C8—C15	112.33 (18)	H18A—C18—H18C	109.5
C7—C8—C14	117.52 (17)	H18B-C18-H18C	109.5
C15-C8-C14	100.63 (18)	C4—C19—H19A	109.5
С7—С8—С9	109.23 (17)	C4—C19—H19B	109.5
C15—C8—C9	103.89 (16)	H19A—C19—H19B	109.5
C14—C8—C9	112.18 (17)	C4—C19—H19C	109.5
C11—C9—C10	114.28 (19)	H19A—C19—H19C	109.5
C11—C9—C8	110.87 (18)	H19B—C19—H19C	109.5
С10—С9—С8	116.61 (17)	C10—C20—H20A	109.5
С11—С9—Н9	104.5	C10-C20-H20B	109.5
С10—С9—Н9	104.5	H20A—C20—H20B	109.5
С8—С9—Н9	104.5	С10—С20—Н20С	109.5
C20—C10—C5	112.43 (19)	H20A—C20—H20C	109.5
C20—C10—C1	107.4 (2)	H20B-C20-H20C	109.5
C10—C1—C2—C3	-28.6 (4)	C2—C1—C10—C5	-28.6 (3)
C1—C2—C3—O1	-120.8 (3)	C2-C1-C10-C9	-145.1 (3)
C1—C2—C3—C4	60.8 (4)	C11—C9—C10—C20	52.7 (3)
O1—C3—C4—C19	28.0 (4)	C8—C9—C10—C20	-78.8 (2)
C2—C3—C4—C19	-153.5 (3)	C11—C9—C10—C5	178.57 (19)
O1—C3—C4—C18	-88.5 (4)	C8—C9—C10—C5	47.0 (3)
C2—C3—C4—C18	89.9 (3)	C11-C9-C10-C1	-65.3 (3)
O1—C3—C4—C5	154.5 (3)	C8—C9—C10—C1	163.1 (2)
C2—C3—C4—C5	-27.1 (3)	C10-C9-C11-C12	-97.4 (3)
C3—C4—C5—C6	-164.4 (2)	C8—C9—C11—C12	36.9 (3)
C19—C4—C5—C6	-40.7 (3)	C9-C11-C12-C13	-43.5 (3)
C18—C4—C5—C6	80.8 (3)	C11—C12—C13—C16	-49.4 (3)
C3—C4—C5—C10	-34.1 (3)	C11-C12-C13-C14	62.6 (3)
C19—C4—C5—C10	89.7 (3)	C16-C13-C14-O4	-72.6 (2)
C18—C4—C5—C10	-148.8 (2)	C12—C13—C14—O4	169.6 (2)
C10—C5—C6—C7	61.0 (2)	C16—C13—C14—C8	45.2 (2)
C4—C5—C6—C7	-167.78 (19)	C12-C13-C14-C8	-72.7 (2)
C5—C6—C7—O2	173.36 (18)	C7—C8—C14—O4	-49.4 (3)
C5—C6—C7—C8	-63.0 (2)	C15—C8—C14—O4	72.9 (2)
O2—C7—C8—C15	-68.3 (2)	C9—C8—C14—O4	-177.24 (17)
C6—C7—C8—C15	170.46 (18)	C7—C8—C14—C13	-164.03 (19)
O2—C7—C8—C14	47.7 (3)	C15-C8-C14-C13	-41.8 (2)
C6—C7—C8—C14	-73.5 (2)	C9—C8—C14—C13	68.1 (2)
O2—C7—C8—C9	176.95 (18)	C7—C8—C15—O3	-33.0 (3)
C6—C7—C8—C9	55.7 (2)	C14—C8—C15—O3	-158.9 (2)
C7—C8—C9—C11	176.91 (19)	C9—C8—C15—O3	84.9 (3)

C15—C8—C9—C11	56.9 (2)	C7—C8—C15—C16	149.7 (2)
C14—C8—C9—C11	-51.0(2)	C14—C8—C15—C16	23.9 (2)
C7—C8—C9—C10	-50.0 (2)	C9—C8—C15—C16	-92.3 (2)
C15—C8—C9—C10	-170.04 (19)	O3-C15-C16-C17	-8.3 (5)
C14—C8—C9—C10	82.1 (2)	C8-C15-C16-C17	168.9 (3)
C6—C5—C10—C20	75.4 (2)	O3-C15-C16-C13	-173.6 (2)
C4—C5—C10—C20	-55.5 (3)	C8-C15-C16-C13	3.6 (3)
C6—C5—C10—C1	-166.4 (2)	C12-C13-C16-C17	-78.6 (4)
C4C5C10C1	62.8 (3)	C14—C13—C16—C17	166.1 (3)
C6—C5—C10—C9	-51.1 (3)	C12-C13-C16-C15	85.3 (3)
C4—C5—C10—C9	177.98 (19)	C14—C13—C16—C15	-30.0 (3)
C2-C1-C10-C20	92.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2O···O4 ⁱ	0.94 (3)	1.83 (3)	2.765 (3)	171 (3)
O4—H4O…O2	0.84 (4)	1.85 (4)	2.641 (3)	156 (4)
Symmetry codes: (i) $x-1/2, -y+1/2, -z+1$.				

Fig. 1

Fig. 2

